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1. Semiclassical Limit

My thesis work, under the direction of Professor Bruce Driver, is primarily de-
voted to the study of classical limits of quantum mechanics. Intuitively, as Planck's
constant (~) tends to zero, quantum mechanics should reduce to the laws of classi-
cal mechanics; this is the semiclassical limit which was �rst shown by P. Ehrenfest
in [6] and Hepp in [14]. There is a large literature devoted to this topic, for a small
sample see [15, 20, 18, 1, 2, 16, 7, 3, 13]. The goal of some of the literature, e.g.
[9, 10, 11, 12, 8], is to approximate the solution to Schrödinger's equation by a list
of parameters obtained from classical mechanics if the scale of Planck's constant
~ is insigni�cant within a system. Alternatively, it may be more important and
interesting if experimental measurement from quantum mechanics, such as the pre-
diction of the position of a particle, can be approximated by using only knowledge of
classical mechanics. The approximation of measurements has applications in many
areas, such as the computation of the N � body problem, quantum dynamics, and
the simulation of tunneling e�ect of quantum mechanics (see Figures

f.3f.3
1.1,

f.4f.4
1.2 and

[17]).
Our work is inspired by Hepp's method in [14] and the technique of Rodnianski

and Schlein's method for unbounded observables in [18]. Let P~ (t) be a time-
dependent observable (possibly an unbounded linear operator) whose dynamics are
governed by a Hamiltonian operator H~. For an initial state ψ which is normalized
and concentrated near a point α = (q0, p0) in the position-momentum space, the
quantum expectation of P~ (t) to state ψ, denoted by 〈P~ (t)〉ψ , can be considered

as a function of ~ with �xed t. The main result in [4] shows that under certain
conditions of H~, the quantum expectation 〈P~ (t)〉ψ can be treated as a �Taylor
series� with respect to ~ i.e.

〈P~ (t)〉ψ = f (t) +
√
~g (t) +O (~) . (1.1) equ.1.1

where the classical limit f (t) and the quantum �uctuation g (t) are determined
by the classical Hamiltonian equation and the linearization of the classical system
respectively. From Eq. (

equ.1.1equ.1.1
1.1) the quantum expectation not only converges to the

classical limit when ~ tends to 0, but also the �rst order approximation error of
the quantum expectation described by the quantum �uctuation solely depends on
classical mechanics, too. Another important consequence of Eq. (

equ.1.1equ.1.1
1.1) is the inde-

pendence of any choice of quantization scheme. If two di�erent quantizations H~
and H̃~ both satisfy the conditions of Eq. (

equ.1.1equ.1.1
1.1) and their classical Hamiltonian

functions are equal modulo a constant, then the quantum expectations relative to
H and H̃ have the same classical limit and the quantum �uctuation. Interested
readers may refer to Subsection

sub.1.1sub.1.1
1.1 for a more detailed statement of the main result.
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Figure 1.1. A simulation of a classical Hamiltonian function
Hcl = p2

2 + V (q) and Hamiltonian operator H~ = −~
2
d2

dx2 + V (q) .

Classical energy Hcl, expected quantum energy 〈H~〉 |~=0.1 and
expected quantum energy 〈H~〉 |~=0.01 cannot overcome the local
peak barrier. f.3

Assume the Hamiltonian operator H~ is non-negative and self-adjoint and let

N~ = ~N , where N is the closure of − 1
2
d2

dx2 + x2

2 −
1
2 . The key assumption for the

main result in [4] is that for all β ≥ 0, there exists Cβ <∞ such that〈
N β

~ ψ,ψ
〉
≤ Cβ

〈
Hβ

~ψ,ψ
〉

for all ψ ∈ D
(
Hβ

~

)
, (1.2) equ.1.2

where 〈·, ·〉 is the standard L2 inner product with respect to Lebesgue measure. One
natural example of H~ satisfying Eq. (

equ.1.2equ.1.2
1.2) is a polynomial of N~ with a positive

leading coe�cient and degree at least 1 (see Proposition 1.11 in [4]). This H~ is
a �nite dimensional analogue of the type of Hamiltonian found in multiple papers
which study Bose-Einstein condensation, see for example, [1, 18]. In general, it
is di�cult to check the condition in Eq. (

equ.1.2equ.1.2
1.2) for other classes of Hamiltonian

operators. However, two main results in [5] show that the operator inequality of
Eq. (

equ.1.2equ.1.2
1.2) does indeed hold for a large class of Hamiltonian operators which is

contained in the collection of di�erential operators with polynomial coe�cients.
[This class of operators contains di�erential operators of arbitrary even order.] For
this class of operators, the �rst result (see Theorem 1.9 in [5]) is that the Schwartz

space is a core for Hβ
~ for β ≥ 0; the second result (see Corollary 1.20 in [5]) �nds

su�cient conditions on the polynomial coe�cients of two operators, H~ and H̃~, in
this class so that the operator inequality of Eq. (

equ.1.2equ.1.2
1.2) holds with N~ is replaced by

H̃~. Thus, Eq. (
equ.1.2equ.1.2
1.2) is a special case of the second result (see Corollary 1.23 in [5]).

Moreover, this second result can be thought of as an �extension� of the Löwner-Heinz
inequality. Indeed, if H~ ≥ H̃~ (in the sense described in Eq. (

equ.1.2equ.1.2
1.2) with β = 1),

then the Löwner-Heinz inequality shows Hβ
~ ≥ H̃β

~ for 0 ≤ β ≤ 1. The second
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Figure 1.2. A �gure eight shaped phase orbit corresponding to
semiclassical mechanics with ~ = 0.1 indicates that a particle can
jump from one well to another in Figure

f.3f.3
1.1 even though the energy

of the particle is lower than the local peak barrier. This is the
tunneling e�ect in quantum mechanics. Moreover, by comparing
between the two phase orbits with ~ = 0.1 and ~ = 0.01, a phase
orbit corresponding to semiclassical mechanics converges to the
phase orbits corresponding to classical mechanics as ~→ 0. f.4

result mentioned above shows a similar inequality holds (under our assumptions)
for β > 1 even though the function x→ xβ is non �operator monotone.�

1.1. Technical result. This subsection �lls in some of the mathematical detailssub.1.1

of the above description of the main result of [4]. Let L2 (m) := L2 (R, dx) be
the Hilbert space of square integrable functions on R equipped with the standard

L2-inner product 〈·, ·〉 relative to Lebesgue measure. Let a~ =
√

~
2 (Mx + ∂x)

with domain D (a~) = S (Schwartz space) and a†~ := a†~|S (the formal adjoint
of a~) be the annihilation and creation operators on L2 (m) respectively. Let P =

P
(
a~, a

†
~

)
be an (unbounded) observable where P (θ, θ∗) ∈ C 〈θ, θ∗〉 � the space

of non-commutative polynomials in θ and θ∗ with complex coe�cients. Further

let P~ (t) := eiH~t/~P
(
a~, a

†
~

)
e−iH~t/~ be the observable P in the �Heisenberg

picture� where e−iH~t/~ is the Schrödinger evolution associated to the self-adjoint
Hamiltonian operator, H~.

1.1. [A Simpli�ed version of Corollary 1.18 in [4]] Let H (θ, θ∗) ∈ R 〈θ, θ∗〉 (R 〈θ, θ∗〉 ⊂cor.1
C 〈θ, θ∗〉 is the collection of non-commutative polynomials in θ and θ∗ with real coef-
�cients) be a symmetric non-commutative polynomial with d = degH > 0. Suppose
there exists constants 1 ≥ η > 0 and Cβ > 0 for β ≥ 0 such that for all ~ ∈ (0, η) ,
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(1) H~ := H
(
a~, a

†
~

)
is self-adjoint and H~ ≥ I, and

(2) Eq. (
equ.1.2equ.1.2
1.2) holds.

Let α0 ∈ C, t ∈ R, P (θ, θ∗) ∈ C 〈θ, θ∗〉 and ψ ∈ S be an L2 (m) � normalized state.
If

(1) α (t) ∈ C is the solution to Hamilton's (classical) equations of motion

iα̇ (t) =
∂Hcl

∂α
(α, α) and α (0) = α0

where Hcl (α, α) = H (α, α) is the classical Hamiltonian function associated
to H (θ, θ∗) ,

(2) a (t) = γ (t) a1 + δ (t) a†1 where γ (t) and δ (t) are determined by the lin-
earization of α (t) relative to initial position, and

(3) A~ (t) denotes a~ in the Heisenberg picture, i.e.

A~ (t) := eiH~t/~a~e
−iH~t/~,

then for 0 < ~ < η, we have〈
P
(
A~ (t) , A

†
~ (t)

)〉
U~(α0)ψ

=
〈
P
(
α (t) +

√
~a (t) , α (t) +

√
~a† (t)

)〉
ψ
+O (~) . (1.3) equ.1.24

1.2. Corollary 1.18 in [4] can even approximate the quantum expectation of the
observable P in Eq. (

equ.1.24equ.1.24
1.3) at multiplie times {ti}ni=1 simultaneously.

1.2. Future Research Plan. There are a number of ways which we plan to gen-
eralize our work. We believe that, by using the same approach as in the one
dimensional case, Corollary

cor.1cor.1
1.1 can be extended to L2 (Rn) for any n ∈ N if the

Hamiltonian H~ satis�es the multi-dimensional version of conditions in Corollary
cor.1cor.1
1.1. Our long-term goal is to develop theorems about the semiclassical limit in an
in�nite dimensional space which corresponds to a quantum �eld setting. However,
the transition from a �nite dimensional space to an in�nite dimensional space gives
way to some new problems. In particular, one must de�ne a correct formulation
of convergence in this setting. For example, one must determine the most appro-
priate in�nite dimensional space and the norm to study the convergence for the
semiclassical limit problems. Another main issue is the construction of examples of
Hamiltonian operator H~ satisfying an in�nite dimensional version of conditions in
Corollary

cor.1cor.1
1.1.

Another direction of our project is to prove Corollary
cor.1cor.1
1.1 for a wider class of

Hamiltonian operators H~, and give some criteria on H~ so that Eq. (
equ.1.2equ.1.2
1.2) holds.

Loosely speaking, Corollary
cor.1cor.1
1.1 only is valid for a Hamiltonian operator H~ which is

a polynomial of a~ and a†~. However, some potential functions in quantum mechan-
ics are not polynomials or even may have singularities, e.g. the Coulomb potential.
Another generalization of Corollary

cor.1cor.1
1.1 is to eliminate the condition that H~ is a

non-commutative polynomial in a~ and a†~. Other conditions of H~, e.g. a growth
control of derivatives of the potential function in H~, are likely required in order
to ensure Corollary

cor.1cor.1
1.1 is still valid if H~ is no longer a polynomial. Finding the

necessary conditions and examples of H~ other than polynomials satisfying the
conditions are main goals of our project. Moreover, veri�cation of a Hamiltonian
operator satisfying Eq. (

equ.1.2equ.1.2
1.2) may be di�cult in general. However, we conjecture

4



that if two Hamiltonian operators arise from the same classical Hamiltonian func-
tion modulo a constant, then one Hamiltonian operator satisfying Eq. (

equ.1.2equ.1.2
1.2) will be

su�cient to show that the other Hamiltonian operator satis�es the same Eq. (
equ.1.2equ.1.2
1.2).

Proving conjecture may ease checking Eq. (
equ.1.2equ.1.2
1.2) because some quantizations may

have a form well-suited to compute Eq. (
equ.1.2equ.1.2
1.2) relative to others.

As discussed above, studying semiclassical limit can simplify computations in
some problems in quantummechanics, e.g. a quantum expectation or the solution to
the Schrödinger's equation. An additional interest of mine is to develop a numerical
scheme to approximate the quantum expectation in Eq. (

equ.1.24equ.1.24
1.3) stably at a rate faster

than O
(√

~
)
. The rate of convergence depends on a state function ψ, Hamiltonian

operatorH~, observable P, time ti ∈ R and initial condition α0. Therefore, we would
like to determine if Corollary

cor.1cor.1
1.1 can be extended to have a faster convergence rate;

this would identify what sets of (ψ,H~, P, , ti, α0) should be picked to achieve the

faster convergence. Moreover, even if O
(√

~
)
is the optimal rate of convergence

in our approach, there may be other robust ways to approximate the quantum
expectation at a rate O (~r) where r > 1

2 (see [9, 10, 11, 12, 18]).

2. Prediction of patients ' survival rate by random forest

In addition to my primary research, I am involved in a joint project with Postdoc
Samad Jahandideh and Professor Adam Godzik at the Sanford Burnham Prebys
Medical Discovery Institute. Cancer cells and normal cells have di�erent protein
expression; functional proteomics is a powerful approach utilizing this idea to un-
derstand the pathophysiology and therapy of cancer. Our goal is to build a novel
model to predict cancer patients' survival rate, cancer stages and remaining lifes-
pan based on functional cancer proteomics data. Unlike traditional approaches
that consider one type of functional proteomics at a time, we propose to base pre-
dictions on multiple functional proteomics and their interactions to make accurate
predictions for each patient. This is a machine learning problem in a high dimen-
sional features space where each feature may depend on each other. A random
forest (RF) algorithm is a base of our model as it can be successfully applied to
high-dimensional and noisy large biomedical data sets. In order to improve the
performance of RF and eliminate noise in data, we develop a strategy to select an
optimal set of features for our biomedical data to train the model and make predic-
tions. The initial process entailed reducing to a set of features with a large decrease
in Gini Index which optimized the AUC (area under the ROC curve). From here,
we manufactured new features based on the exponential ratio among the features
in this reduced set and combined the new features with features in the reduced set
together. Working with this increased set, we again trimmed to an optimal set by
examining the Gini Index and AUC as our metrics. By using the optimal set of
features with our RF algorithm, performance measures, e.g. sensitivity, speci�city,
Mathews correlation coe�cient (MCC) and AUC, all improved (see [19]). I am
interested in continuing research in this area.
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